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STATISTICS OF ONE-DIMENSIONAL CLUSTER MOTION*
John D. Wrigley, David A. Reed, and Gert Ehrlich
Coordinated Science Laboratory,f Department of Metallurgy, and y
Department of Physics, University of Illinois at

Urbana-Champaign, Illinois 61801

The statistics of clusters, made up of metal atoms in

ad jacent one-dimensional diffusion channels, are developed

quantitatively. Kolmogorov's equation is used to find the

S—

mean square displacement for clusters capable of existing in

energetically different configurations at the same displace-

ment of the center of mass; this is done under steady state

™
)

conditions, for which the probability of finding a specified

configuration does not vary in time. Two systems are examined:

.

-

* s

)
1

(1) Dimers capable of existing in an infinite number of states,

» 7 | a situation realized if dissociation is allowed, and (2) Trimers

| diffusing on planes, such as W(211), on which nine distinct jump
processes may contribute to the cluster motion. In dimer diffusion,
it is demonstrated that dissociation may be important even if

' the fraction dissociated is minor. For trimers, previous

attempts to approximate the motion through the use of average

transition rates are compared with the exact solutions and

é} found wanting. Important statistical quantities beyond the
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mean square displacement are presented for simple dimers,
capable of existing in only two states. The generating func-
tion is derived, together with the higher moments of the
displacement, Probability density functions for the number of
jumps in an interval t, for the waiting time up to a specified
jump, as well as for the displacements, are all presented,
These differ significantly from the density functions for an

ordinary random walk, However, an averaging technique allows

simple approximations for the behavior of dimers.
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Quantitative observations of atomic clusters in the field ion
microscope have recently made it possible to unravel the individual jump
processes in the one-dimensional surface motion of dimers.1 This analysis
rests on a stochastic formalism for the diffusion proceas? which relates
the mean square displacement of the center of mass to the jump rates of
the individual atoms in a c1uster.3 Two simple statistical problems
have so far been considered in detail: the mean square displacement of
dimers, made up of atoms in adjacent diffusion channels and capable of
existing in the two states labelled 0 and 1 in Fig, 1, and the diffusion
of model trimers for which three jump rates suffice to describe the
motion. Although the basis for an atomic analysis of cluster motion has
been established, it still remains to elaborate the stochastic formalism
and to cover the behavior of more complicated real systems. That is the

present aim. We address ourselves to three related areas:

1. 1In the diffusion of dimers, dissociation into free atoms occasionally

occurs at high temperatures.3 To assess the significance of these events
in the analysis of dimer diffusion, the mean square displacement is
evaluated for dimers that can exist in an infinity of different states.

2. The actual motion of trimers may depend upon nine different
atomic lteps.a So far, this complicated motion has only been approximated.
Here the diffusion of trimers will be examined in its generality, as a
preliminary to the analysis of experimental observations, allowing all
configurations that can be achieved by moving an atom one lattice spacing

away from its neighbor,
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3. Even for the motion of the simplest cluster, a non-dissociating
dimer, only the mean square displacement has been worked out. For a
proper understanding of cluster diffusion, as well as for assessing edge
effects in real svstems,5 the distribution governing the displacements of
dimers must also be known. In the last section this distribution,
together with other important statistical functions defining the random

motion of dimers, is developed.

I. FORMALISM FOR CLUSTER DIFFUSION

In the previous discussion of cluster motion in one dimension,
only systems with a unique cluster configuration at each position
of the center of mass were considered. This restriction is not inherent
in the formalism, however, and can readily be removed to more adequately
describe the actual surface motion of clusters. Throughout this presen-
tation we still confine ourselves to clusters composed of atoms in
ad jacent diffusion channels, and moving in one dimension only, on a surface
with spacing £.

We proceed, just as in the past, to follow the migration of an
m-mer by mapping the location of its center of mass on an infinite one-
dimensional lattice, with spacing £/m and m sites per unit cell,

The random walk always begins in the unit cell based on x=0. Diffusion
of this cluster is assumed to occur one atom jump at a time; regardless
of the cluster configuration, each jump is presumed to span only a.
single surface spacing. In specifying the probability of finding a

point x on the center of mass lattice occupied, it is now necessary to
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explicitly recognize the existence of energetically different cluster
configurations i. The probability Py that point x be occupied is now

X ? px,i w020, ; (1)

where the summation extends over all configurations i accessible at x.

The transition rates from one site to the next also depend upon the
configurations involved. A general formalism to handle this is outlined

in the Appendix. Here it suffices to specify the rates starting from a given
configuration i, with kx,i denoting the rate of transitions from x to x+l,

and By the rate from x to x-1. Kolmogorov's equation6 for the probability

Py therefore becomes

d p
i x,1i i
at "f Kot 4Pl 4 -zi (g g FHy ¢Pg 4 +zi Hatl,iPx+1,1 ° (2)
With the additional definitions
= = 3
kxpx ? kx,ipx,i HxPx ? px,ipx,i 4 3
equation (2) reduces to the usual form
dpx
at ” Ax-lpx-l i (Ax+u'x)px * H 1 Pxel T8 aldl,ie . %)

The differential equation for ((Ax)z), the variance’ of x, follows

just as previously

2
AN o o) - () = GOUAY = )] + (A +(u) . (5)




However, the possibility of having i different cluster configurations, each

with its own characteristic transition probabilities, at any point x, is

prrom—

now explicitly recognized by noting that

<)\x> “EE lx,ipx,i <ux> -z ; H'x,ipx,i ()
x i x i

<x>‘x> =ZxZ lx,ipx,i <xux> sLxo b

P,
X i b'e i %1%, 1

(x) =Z xT p

i i x,1

Although it appears that examination of cluster diffusion in terms
of individual transition probaﬁilities entails greater algebraic com-
plexity when energetically different clusters are possible at a given
site, the conceptual framework remains essentially the same as that

already useful in earlier, simpler analyses, As specific examples of
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the application of Eq. (5) to cluster motion, we will analyze the linear
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diffusion of dimers as well as trimers. In experimental studies, the

emphasis has been upon measurements under steady state conditions, such

3

| —
;

that the probability of observing different cluster configurations

—
Pl

remains unchanging in time. In view of the complexity of the systems

of interest, we shall throughout the first three sections limit

ourselves to this steady state.

ey




II. DIFFUSION OF DISSOCIATING DIMERS

|

A. Mean Square Displacements

In considering the coupled motion of two atoms in adjacent diffusion
channels, it is expedient to label each energetically distinct dimer
configuration by the separation of the two atoms, expressed in units of
the surface spacing projected along the diffusion direction, as in Fig. 2.
On an infinite lattice, an infinity of configurations is therefore possible
on each site x. The finite range of interatomic forces insures that only
a limited set of these configurations corresponds to bound pairs; the
rest are independently migrating adatoms. This distinction will subse-
quently be of interest, but is not necessary at the moment - all
configurations can be treated equivalently.

The rates important for dimer motion are designated according to the
conventions illustrated in Fig. 2. Transitions for configuration i to i+l
are denoted by oy transitions from higher to lower configurations, that

is, from i to i-1, by Bi' The scheme of rate constants connecting various

gL

L e T A
SR

dimer configurations is shown in Fig. 3. Three features are important:

1) Even configurations appear on even sites of the center of mass

ey oew TR T TR A R e e e

lattice, odd configurations on odd sites. 2) Inasmuch as only single

4

jumps are ever allowed, at most two rate constants enter into the

movement of a given dimer configuration from one site to a neighbor.

Thus

where 610 is Kronecker's symbol. 3) The rate constants depend only upon

the dimer configuration, and not explicitly upon the position x.

o = T ———————
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It is now an easy matter to evaluate the different contributions
to Eq. (5). The rate constants averaged over position become
(xx> = i (xx’opx’0 + lx’lpx’l + Kx,pr,Z oy
->i [o, +8, 08,01 P, . (8)
Here we have adopted the notation
Pi = i px,i X = 0,+1,42,... 9)

to denote the probability of finding a specified configuration i, regard-
less of position on the center of mass lattice. The other terms appearing

in Eq. (5) now follow immediately.
(ux) - E [ai + 51(1'510)]1’i = <1x> (10)

A

x,ZPx,Z £ e

(x> = i"(xx,opx,o TR 1Pt

= cxo(x)o + (“1*31)(">1 + (azﬁz)(X)z IR

it Loy 48, (1-8 4 D))y (1)
Here
(x), = i Py k (12)
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denotes the space average of x for a specified configuration k; depending

upon the parity of the configuration, this average will include either

even or odd sites exclusively, Finally,

= - = ( -
G ) 'L: Lo 48, (1-6, D1 (x), (x ) (13)
Only two terms contribute to the differential equation for the

variance of x, which now appears as

dggszzg

3 =(A) + (b ) =2 E ["‘1*‘91(1'610)]1’1 ; (14)

We shall be concerned with the behavior of dimers over time intervals

long enough for a steady state to be established; the terms Pi =Zp

i
then no longer vary in time. Under these circumstances the requirements

X,1

of detailed balance are satisfied if

9% e e e % s
’ ’
e L R
and
@ o o . @
0 1 0*1 j
P, =— P, P,==—P = Pos P =p I — (16)
1 81 0 y) BZ 1 BIBZ 0 i+l 0 =0 Bj+1
The normalization requirement
=P =] (17)
i
i
now allows us to write
> -1
= 18)
e ST (
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In the steady state, only constants appear on the right hand in Eq. (14).
Furthermore, for the long time intervals characteristic of the steady

state the precise starting point becomes unimportant. Equation (14)

can now be integrated to give the variance of x:

2
((bx) ) =2t % [ai+ei(1-6i0)]1>i. (19)
i

Using relations (16) and (18), this becomes

Clin)™) w3t Poll + (@ #8,)/B, + (2,#8,)0,/(B8,) + ...]

i
(1+% Na,/B.)
4t i =13 J
= ao 1 v (20)
a +§ j?,oajlsjﬂ)

We now have quite a general relation for the variance of the
displacements executed by a dimer. This relation is capable of describing
contributions from an unlimited number of different configurations,8
provided only that the transition rates o, and Bi are all known. For
our purposes, however, it is convenient to distinguish, somewhat
artificially, between two types of configurations: those with i small,
for which the two atoms of the dimer are bound to each other, and those

with i large, for which atomic interactions have decayed to such an

extent that the atoms move independently. Assume that the latter condition

holds for i = f; then

ai.Bi.a i (21)
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where o denotes half the total jump rate of a single atom, The factor
of 1/2 accounts for the fact that in the diffusion of single atoms, the
total jump rate, rather than the rate in a specified direction, is
traditionally specified. Equation (20) can now be written in the

alternative form

£-1
2
(@x)%) = 2t{i§0[ai +B,(1-5, 0P, + 2P}, (22)
where
P* E P (23)
8 ;¢ t

denotes the probability of finding a free dimer.

B. Specific Examples

In the limit P =1, that is as dissociated dimers dominate, the

variance of the displacements, Eq. (22), becomes
2
((8x)7) = bat (24)

This describes the movement of two free atoms on the center of mass
lattice, with a grid spacing of £/2. For free atoms, an expression for
((Ax)z) can be obtained independently of the preceding, The coordinate x
of the center of mass is related to the coordinates Y1 and Yy of the

2 atoms on the real lattice by

x=y, +y, . (25)

It therefore follows that

(@0 = Cayp®) + ey + 2 (yyy,) (26)
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If the movements of the atoms are uncorrelated, then

(D) = AanyD . (27)

For the random walk of a single atom,6 however, we have

(en® =20 ¢, (28)

yielding for ((Ax)z), the variance of the center of mass coordinate,
exactly the same expression as derived from our general formalism for
pairs,

If dissociation is unimportant, so that Ps-O and only the two bound

states 0 and 1 are possible, then al-o and Eq. (22) transforms to
2
(b)) = ba Bt/ @y +B)) , (29)

the relation already derived in I. This model appears to describe the
available data for dimers on the (211) plane of tungsten. However, in
quantitative studies by Stolt et al.,3 the dimers were observed to
dissociate occasionally. In order to estimate the effects of such events,
we assume that dimers in configuration i =2 3 are entirely free and that
atomic interactions have ceased to be important once the interatomic
separation amounts to 2¢, This situation is indicated schematically by
the potential diagram in Fig., 4. The transition rate o, is then just

2
equal to the rate o in the free dimer,

@ =V exp - AE:/kT, (30)

where AE:yis the activation energy and va the prefactor for jumping.
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The variance of x now becomes
2
((ax)") = 4tp {B, +a, +alP,/(2P)) + Ps/Pl:l} i (31)

The probability ratios P2/P1 and Ps/Pl depend only upon the
thermodynamics of the different dimer configurations and in principle
are accessible to direct observation. The rate o is available from separate
measurements on the diffusion of single atoms. This still leaves the two
transition rates Bl and ¥, with only Eq. (31) to connect them to
experiment, However, the rate %y at which dimers change from configura-
tion 1 to 2 is fixed within limits by the ratio PZ/PI’ that is, by the
thermodynamics of configuration 2 relative to 1. In the worst case, we

are likely to have

T
ay = val exp AEa /T, (32)

1

with v ~v | AE# = AE*; a more likely event is that
@y o @, o
+ ¥

AE. ~ AE_ + cE 0<cs1, (33)

oy o 2

where E2 stands for the energy of configuration 2 relative to that of
configurstion 1.

Numerical estimates for the effects of dissociation upon the mean
square displacement are shown in Fig. 5 for a system modeled on the
behavior of rhenium dimers on W(211).3 It appears that dissociation can

significantly affect the mean square displacements. If a sizeable

fraction of the dimers can transgress beyond the 0 and 1 configurations,




12
then ((Ax)z) diminishes, as.the mobility of free atoms in this model

" : system is less than that of bound dimers. It is obvious that these

effects must be allowed for in the analysis of experimental observations.

P

The corrections for dissociation do not sensitively depend upon the
particular assumptions concerning ¥ the unknown rate of transition from
configuration 1 to 2. Even in the unlikely worst case, the variance of x

differs only by a~ 10% from that found with the more likely smaller values

A demes

of o), for which the actual magnitude of the rate has hardly any effect
on ((Ax)z). It is of interest that the dependence of the variance upon
the particular assumptions concerning oy is greatest when the fraction of
dimers in state 2 is least. 1In principle, it is possible to have an
entirely negligible amount of dissociation and yet have important contri-
butions to the diffusion from configurations such as 2. Physically this
happens if transitions from configuration 1 to 2 are possible, but the
return rate is much faster. No appreciable concentration can build up

in state 2; every time a transition into this configuration occurs, it is

1 AR R

immediately followed by the reverse process, However, each of these

events means a displacement of the dimer above and bevond that of a

Yy wel SED R T R e e ey

dimer with only two allowed configurations.

.
RS
-

——
-

It is important to consider this possibility in interpreting the
s diffusion of dimers. Even if no dissociation is actually observed in

an experiment, the analysis should properly be carried out with a model

N T—————

e

incorporating the effects of dissociating dimers. This can be accomplished

:; j using the thermodynamic information to guess at the value of the transi-

tion rate from configuration 1 to 2, and estimating the jump rates with

and without allowing dissociation.
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IIT. TRIMER DIFFUSION

The linear migration of trimers can be handled in much the same
way as that of dimers, although the nomenclature becomes more complicated.
The unit cell of the lattice on which motion of the center of mass is
mapped now contains three points; as shown in Fig. 6, two energetically
different trimer configurations are possible at each such point, The
convention found useful in designating dimer configurations in Sec. II
no longer suffices for trimers. We therefore retain the labelling devised
in I. 1In this scheme, slanted or V shaped configurations are distinguished
from the others by adding B or A respectively to the usual configuration
1ndex.9 The different terms entering Eq. (5) for the variance of x can now
be readily evaluated. Keeping in mind that trimer configuration 0 occurs
only on sites of type 0, configuration 1 on sites of type 1, etc., it

irncdiately follows that

(Ax> = (aI+aII) z z

oPx,0a ¥ 2111 “0Px, 08

* Oprp) TPy aa * Prrr E1Py 1 * (Spterp) 9Py 9y (34)

+ 11 Z2Px, 28

symbols such as 21, for example, indicate summation over x for all sites

of type 1. The averaged transition rate (Ax) can be written more compactly

() = (aptar) Py, + (by#b )P, + (cpte Py,

POB +b

bl ¢ 4 rrfis * Srrrf2s (35)

where, in conformity with the conventions for dimers, we use the
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abbreviation

POA EzOpx,()A (39}

to describe the probability of finding a configuration, such as 0A in this
instance, regardless of position x. We recall2 that under steady state

conditions these probabilities are connected by a number of simplifying

relations:

Py =P

14 = Paa Pip ™ Pop

P1a = Poa 81/ P13 = Poa 211/¢111 (37)
Pos = Poa 21°r1/(cq8y1y)

P

-1
oA (1 + ZaI/cI + ZaII/cIII + aIcII/(cIaIII)] 3

Equation (35) therefore simplifies to

(kx) = (aI +a; )Py, + (bI + bII +cp + e P,
*orfos * Prir * S1rp)Pip - (38
Similarly,
() = (ap + ap)Pg, + (by + by + ¢y + e )Py,
*arrrPos * ®rrr + CpxodPis = A0 Sl

(=) = i *[(ar+er 1P, on * 211rPx,08 + ®rP1P 14

* PrrrPx, 18 * (Cr*erp)Py,2a * C111Px, 28
- (.I.u)(xsoA + (b1+bu)(x)IA + (cI+cn)<x>2A

+ar®og + br{®gg + e (®gy - (40)
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Here we have resorted to the convention

<x>1A = Elex,lA (41)

to indicate the average of x for a specific trimer configuration, in this

instance lA. The last remaining term in Eq. (5) is

(xux) = (aI+.H)<x>0A + (cI+c )<x>lA + (b )<x>2A + a

II II 1 ® op

+ cIH<x)lB + bIII<x>ZB ; (42)

The differential equation for the variance of x can now be written as

ngszzz

dt = 2 preptrrmerp) (3 =(Xgp) + Bpppmerrp) €x) 5=(x) )

+ POA[2(31+311) + (bI+2bII+2cII)aI/cI]} : (43)

We still require the two terms

To derive these we need the probability Pt of having a specified
3
configuration at the point x. This can be obtained from Kolmogorov's
equation, as shown in the Appendix. For Py 15 8 an example, the appropriate
’

differential expression is

dp
X 1A _ -
dt ®rPx-1,0a * *11Px-1,08 ~ CrPrrterttrr)Pe 14

+ DrPre1, 24 * PrrrPrs1,2n - (43)

It follows in the usual way that
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d{ x)
dt

1A

= aI((x)0A+P (b et te

on " ¢ 1

*bl"“‘\ )y +b___(x) (46)

2a"Paa) + 2 (0 g +Pop 111 ({* 25" P2p) -

In much the samc¢ "ashion, it can be shown that

a(x) ),

ar = Py #P ) = (bpde b de (X0,

+a (0 ga"Pop) + ap (%) gp=Pop) + b (30 p4P10) (47)

Using the steady state relations (37) and the definitions of Eq. (44),
we find

dXA
wath = (20 +c +b e

at 100%a - brpXp - 2(bprepthypte PPay/ep - (48)

The differential equation for XB follows from an analogous sequence of
steps as

Xy

e

s T Prfa T 2t/ - Py s

! it S i ¢ II

Only the steady state, in which the time dependence becomes unimportant,

is of interest. Equations (48) and (49) therefore reduce to
(2bp + e +bpde )Xy + brpXp = = 2(byocp4b e )Pg,a,/c;
bre¥a + Opprterrp)Xp = - 2(0pa,/c; - 4P, 9
with the solution

a A a_A
e | g
= 2Py, Teh Xy = 2Py, e (51)

) a..c_/a

a = [bypp(®ymagge /ag) = (bymeptd

Y(b
11 II (b III III)]

/a )(2b +c. +b__+c_.)]

AB 4 th cI+bII II) 3 (bII i+ i | &L TR LY
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b__b .

A= (Zbpte by e  D(byppter ) = bybo

/gl g o

Substituting these results in Eq. (43) and integrating, the variance of

the center of mass displacements for trimers appears as
2
((Ax)7) = htPQA[(bI-cI+bII-cII)AA/A + (bIII-cIII)AB/A

+ cI(1+aII/aI) + (bI+2bII+2cII)/2]aI/cI . (52)

In the limit as a__ = b = 0, trimer migration can only proceed

(i i e

through A configurations. This possibility has been treated exactly in I.

For such a diffusion path, Eq. (52) simplifies to

18 a b_c_t

2 I g
((bx)°) = . (53)
(2aI+cI)(2bI+cI)

which is precisely the relation previously derived. If the transition rates
meet the condition bII-cI-O, then diffusion must occur by movement of the
trimer through the configurations OB, 1A, and 2A only. This constitutes
another symmetrical path, for which Eq. (52) yields

18 aIIibIcIIt -
+epp)(2brtery)

2
((ax)") =
(2a;,;

again in agreement with previous work.

The complete equation for trimer diffusion involves nine transition
ratel.a These are not all accessible to direct observation in any
straightforward way, but Eq. (52) makes it feasible to model the behavior
of trimers for a known interatomic force law., An approximate procedure has
been suggested in the pllt.z In this the motion is idealized as occurring

via a symmetric path through the unit cell; average rate constants are




then used to account for the presence of energetically different con-

figurations at a lattice point. Tests with model potentials reveal that

this approximation works surprisingly well in many instances, yielding mean

square displacements within 25% of the true values. Under these circum-

stances the diffusion parameters deduced from the usual Arrhenius plots

are essentially without error. However, for some combinations of physically

reasonable rate constants the average rate approximation fails by more

than an order of magnitude. Despite its complexity, the exact

relation (52) for the variance of the center of mass positions must

therefore be used in modeling the diffusion of trimers.

IV, STATISTICS OF TWO-STATE DIMERS

The emphasis up to this point has been upon the mean square displacements

executed by the center of mass of a cluster during surface diffusion.

s W G @GN T B Ws = -

The distribution of displacements, as well as higher moments of the distribu-

tion, are also of concern. From a practical point of view, we note that one-

)

i

dimensional diffusion is observed on planes of finite size, so that corrections

have to be made for the possible effects of the edges. The simple relations

available for this, however, are based on the assumption, as yet not tested,
that the displacements can be approximated by a Gaussian distribution.
More than that, the one-dimensional motion of clusters also constitutes

a novel type of random walk, of interest in its own right. Here we there-

fore derive several statistical quantities important in describing cluster

motion.
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We confine ourselves to the simplest clusters, to dimers that can only
exist in the two configurations 0 and 1 indicated schematically in Fig. 1.

Transitions from x=0 to x=1 are assumed to occur at the rate a, from x=1 to

x=0 at the rate b. That is, in the general scheme indicated in Fig. 2,

aoag and 61=Q; all other rates vanish., To ease the derivation of higher

moments, which in principle are directly accessible through Kolmogorov's

equation, we first develop the probability generating function G(z), defined by

G(z) =T 2'p_ e L e, el
X

(55)

The distribution governing dimer displacements is presented separately.
Also of interest for characterizing the random walk of dimers is the
probability density function for the total number of jumps, and for

the time required to make a fixed number of jumps, the first of which plays

a key role in the distribution of displacements. 1In the last section, both

are derived and compared with the behavior of simple random walks.

A. Generating Function and Moments

Starting from Kolmogorov's relation, Eq. (4), it follows quite

generally that

9G(z) x x X
3t z lex-lpx-l 5K (kx + ux)px e kx+1px+1 . (56)
x x x
For dimers, this differential equation reduces to
G(») = (u - 2)(aG, + bG,), (57)
where é(z) denotes the time derivative of the generating function and we
have introduced the definitions
u=z+1/z
- X
Go Eoz 9, (58)
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‘ﬁ To proceed further, the sums G0 and G, over even and odd sites, respectively,

1

G0 = qu1 - 2aG0

é = auG

1 = 2bG1

0

i

10
For excursions starting from even sites,

for excursions from odd sites,

SN e R OB R B R T e s e

-

even site, we find

.
= S

must be expressed in terms of the dimer transition rates.

Laplace transformation converts these into the form
(s +2a)f{cy} - bur{c,} = G [t=0]

- au.t{Go} # (8 + 2b)£{Gl} = Gl[t=0]

Ay o s + 2b
£{G0 } (s + q)(s + 1)

(0) > au
£{61 } (s + q)(s + 1)

where

i S et 71

A .

Again from

Kolomogorov's relation, we find the coupled differential equations

(59)

(60)

’

s is as usual the argument of the Laplace transform, and the values of

G, and G, at time t=0 are denoted by Goft=0] and Gl[t=0] respectively.
c§Ple=0] = 1, cio)[no]c 0, (61)
Ggl)[twd] = 0, Gil)[t=d] =z (62)

the origin of the dimers is indicated explicitly by the appropriate super-

script. For the moment confining ourselves to excursions starting at an

(63)
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= (a+b)1+[1+ ab(u2 - 4)/(a + b)2]¥}

q:
(64)
- 2 2%
r=(a+b){1-[1+ab@ -4)/(a+b))]?%
The inverse transformationrlof Eq. (63) yields the desired quantities
(0 _dg - . .. (r-2 1
G0 Q- r) exp(~ qt) (q - 1) exp(- rt) %5
0
Gi QR z;—%g;y [exp(- qt) - exp(- rt)]

Substituting these in Eq. (57) and integrating gives the generating function

G(o)(z) for starts at even sites as

P2y = 1+ 2B ([q-p(us2)] [1-exp(-a0)] /q

- [r-bu+2)][1-exp(-rt)]/r} . (66)

A similar sequence of steps yields the generating function G(l)(z) for

excursions from odd sites:

¢Dzy = 2 + 5%§%§§1 { [q-a(u42)] [1-exp(-qt)] /q

- [r-a(u+2)][1-exp(-rt)]/r} . (67)

In the limit as the transition rates a and b become equal, the generating

function for starts at x0 reduces to

(xg) X
G (z) = z expa(u-2)t a=b, (68)

appropriate for a simple random walk over discrete sites but continuous

in time,

e
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"‘ ' The nth moment (x") of the coordinate of the center of mass is now
l easily accesstble,6 through repeated differentiation of the generating
function according to
' (z =% (z) =2 x"p. = (x") . (69)
az X
z=1 x
' We display only the 2nd and 4th moments; the odd moments vanish for
' i excursions starting from even sites.
2,(0) _ _2a L T
l (x7) - {th+2(a+b) [1-exp-2(a+b)t]}
(70)
' 2, (1) _ e | L B
(x°) ok {2at 2 (atd) [1-exp-2(a+b)t]}
} <x4>(0) —S8ab_ {Gabt +3at .Ll exp-2(a+b)t
l (G‘H?)
2
+ (5a E::g-)ﬂb )t Lb)(a -28ab+7b ) [1-exp-2(a+b)t]}
8b(a+b)
. (71)
: GHD a1 4 B8 (apcgpe L—)-( Ty exp-2(atb)e
e (atb)
‘ (Sa -b-ezla:ﬁ*bl; )t _ (a -b)(lBa -16ab+7b ) [1-exp-2(a+b)t]}
, 8a(a+b)
V In the limit a=b, the moments simplify to
| 8
g (x2>(°) = 2at
(x2y1) « 2at + 1 (72)
'3 ; ‘; <x4>(0) = 12&2t2 + 2at
:" | 3 5.£
L} (xl‘)(l) =1 4+ 12a2t2 + l4at a (73)
4 ' These are precisely the values for an ordinary random walk in continuous

time.
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For a Gaussian walk characterized by a total jump rate 2) and
starting at the origin,

(xa) =3 (x232
(74)

(x%) = 2t

We note that in the limit of long times, only the first term in braces
occurring in Egqs. (70) and (71) contributes, In this limit, therefore,
the ratio of the ath to the an moment for dimer displacements is exactly
that for a Gaussian walk. The 2nd moment for dimers is, of course, equal
to that of a Gaussian, but with an effective jump rate L = 2ab/(a+b).
In short, for the lower moments at least, a Gaussian approximation is
appropriate.
B. Probability Densities

1. General Approach

In principle the distribution governing cluster displacements can be
obtained from the generating function G(z) by expansion in a Taurent
series. We adopt a simpler, physically more transparent approach.

For the center of mass to end at point x after N jumps, having
started at x, it must take [N + (x - xo)]/Z steps to the right and
(N - (x-xo)J/Z to the left; jumps to the right and to the left are assumed
equally probable. The conditional probability f{x|N} of ending at x, given a
total of N jumps, therefore obeys the binomial 1¢w6

-N

N
f{x|N} = S 18 1 (75)
0

2

note that £{x|N} = 0 1f N and (x-xo) are not of the same parity. The

joint probability f{x,N} of the center of mass being at x after N jumps is
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fx,N} = py(o)ffx|N} (76)

where pN(t) denotes the probability that during an interval t a dimer will
make a total of N jumps,
To obtain the desired probability Py of a dimer ending at x, we just

2
suml over all jumps N

©

p, = I py(t)E{x|N} . (77)
x N=0 N

It now remains to derive the probability density pN(t) describing the
total number of jumps executed by the center of mass during time t.
Closely connected to the number of jumps during such an interval is the
time Tk required to make a fixed number, k, of jumps. Although not
directly involved in arriving at Pys the time distribution is of interest
in characterizing those aspects of the motion of dimers distinct from

ordinary random walks. The probability densities for N and for T, are

k
therefore derived separately in the next two sectionms.
2. Probability Density for the Number of Jumps N

We seek the probability pN(t) that, as the dimer moves along the lattice,
it will make a total of N jumps in the time interval t. Let XN denote

the rate of making the (N+1)th jump. Inasmuch as the number of jumps N

can never decrease, Kolmogorov's equation for pN(t) becomes13

dp,y(t)

dt " " AoPo(t) (78)
dpy(t)
B e xN_le_l(:) = APy (®) N> 0. (79)
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The Laplace transforms of pN(t) are therefore
s S (80)
Hpy(0)} = =5
0
xN-l
tHog(o)} = 5 v {py_, ()} N> 0. (81)
Equations (80) and (81) immediately lead to the general relation
1 N-1 kj
Elpg(t)) = == 1 N > 0. (82)

0 =0 5 **jn

If excursions start at an even site, then the rate of jumping for dimers is
given by
kN = 2a N even

XN = 2b N odd . (83)

We shall only present solutions for this situation, but note that for

excursions starting at an odd site, a and b are interchanged throughout.

With the rates defined by (83),

N/2 N/2
£{plP (6} = —L20 0]

N even (84)
(as28) WD /2 (o o1 N2
(N+1)/2 .. . (N-1)/2
“"150)(")} . '—Q—.)(Nu)/zlﬁl Weij/e @ Dodd. (85)
(8+2a) (s+2b)(

For an odd number of jumps the inverse transform is immediately available,
and gives
(N+1)/2 2 (N-1)/2 1

 N/2
(0) 2a t ' “expl - (a+b)t] T ((a=b)t]
py (t) = /2 (86)
N (5’-;—1-)' [2¢a-b)]V/2

N odd .
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The solution for an even number of jumps is obtained, by substituting

(86) in Eq. (79) and integrating, as

B 28y 2 (252 n&t(N+1)/2£5p[_ asb)e), | e
PN 2(N/2)! [2(a-by] D72 1 (N-1)/2

- I(N+1)/2[(a-b)t]}

N even ., (87)

Here In+%(z) is the modified spherical Bessel function of the first kind.
As the rates a and b approach each other, dimer behavior becomes
independent of site, and the total number of jumps should therefore

conform  to a Poisson distribution. The limiting form of pN(t) when a =b

11
can be obtained making use of the series

‘/2—5 " 1-3-5.?1.1(2n+1) {1+ 1:?23«3) = 2:(;%?22:”5) LMERD N G
and the identity
103°5... (2k-1)+ (2% !) = (2K)! : (89)
Both Eq. (86) and (87) reduce to the proper form
py(t) = Q‘—"——-“e;*:—'-—z'—t- : (90)

The probability density for the number of jumps by a dimer is
compared in Fig. 7 with the behavior typical of an ordinary random walk,

for which the jump rates are independent of position, and a = b . As expected,

when the jump rates differ significantly, there are pronounced variations in the

probability density on going from an odd to an even number of jumps,
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In Fig. 8, the average of the probabilities for two neighboring jumps,
when the rates a and b are significantly different, is cempared with the
same average for a Poisson distribution, characteristic of an ordinary
random walk, The agreement is quite reasonable. Averaging over adjacent
values of N eliminates the large excursions in the probability, revealing
overall trends for dimers which are quite similar to those in a simple

random walk,

3. Probability Density for the Waiting Time Tk
Basic to the development in this section has been the assumption that

cluster diffusion can be described as occurring via atomic jumps random in

time, with transition rates depending only upon the state of the system

from which the jump takes place, That is, the elapsed time T4 between

jumps i and 1 + 1 has an exponential probability density
fi(T) = Ajexp - AT 91)

where ki denotes the rate of the (1+1)th jump, The time Tk at which the

kth jump takes place is given by the sum

k-1
A e B ¢

(92)
ka0

1 .
The waiting times Ty for individual jumps are independent quantities, each

with a characteristic function

® 1y
8,(0) = I@ exp(jOr)f (T)dr = ;;—%-33 : (93)

where jz- -1. Because of this independence, the characteristic function
6

@T (8) for the probability density of Tk is
k




A tne

28

k-1 k-1 ki
e () & 0 9. (8) » I ol
Ty =0 1 im0 *y = 1®

(94)

Substituting the jump rates (83) appropriate to dimers, the characteristic

function of Tk for excursions starting at an even site is found as

85 (®) = [2a/(2a-18)) “*1)/ 221 (2p-10y) -1)/2
k
k odd

(95)

k/2 k even.

¢y (9 = [2a/(2a-38))%/ %20/ (2-50)]
k
For excursions from odd sites, a and b must be interchanged. The desired

probability density function fr (t) is now obtained from the exponential
k
14

Fourier transform ~ of ¢_ (9),
T
1 o
ka<:> -3 L exp(-jetmTk(e)de ‘ (96)
as
f;o)(t) o (20) *H/2 90y (K-1)/2 0 _2at)
K
X [ck‘l/(k-l):J1F1[(k-1)/2;k;(za-2b)c] x odi

97
£ (©) = (28)*/%(20)*/ exp- (2060 €471/ (=13 11 7, [/ 25k (20-20) ]
k even .
Here 1Fl(a; c; z) denotes Kummer's confluent hypergeometric series.
In the limit as a=b, jumping becomes a Poisson process, in which the

waiting time for the kth jump is known to conform to a gamma distribution.6

Also in this limit, the Kummer functions in Eq. (97)
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th
approach unity. The probability density for the time at which the k

jump occurs then is

£, () = 20 e/ -1y exp - 2at : (98)
K

As expected, this is just the gamma distribution of order k.

Probability densities according to Eq. (97) are plotted in Fig. 9.
In these graphs, the probabilities calculated for different values of the
rates & and b are compared with each other, always keeping A = 2ab/(a+b)
constant. When the number of jumps k is small, different choices of a
and b yield significantly different curves. Of course for k even, the
plots are invariant to an interchange of a and b. Despite that, the
probabilities for a # b are not similar to those for a = b. As k becomes
large, however, these differences diminish; the waiting times can then be

reasonably approximated by a gamma distribution, calculated for the

effective jump rate A.
4. Distribution of Displacements

With the probability density pN(t) for the number of jumps during an
interval t in hand, we can now write out the probability density for x.

Using Eqs. (75)-(77) as well as (86) and (87), we find that for starts at

an even site,

i N/2
o VEES et o,

[I(N-l)/zf(a-b)t] - I(N+1)/2[(a-b)t]}

tN/2

2N[2(l-b) ]N/2

X

x,N even (99)
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= ‘ N/2 N/2

WL ) (4ab) N! t

p. =\ a exp[-(a+-b)t] ,/. o I [ (a-b) t]
T w (55)(5%)e(558): Mtacany 12 W2

x,N odd

If the initial position is an odd site, x on the rhs of Eq. (99) is replaced
by x-1, and the rate constants a and b are interchanged.
In the limit a=b, it follows immediately from Eqs. (88) and (99)

that

p, = exp(- 2at) 2 at)¥ [(N—;’i)'(?‘-;l)'f}- exp(- 2at)L (2at).  (100)

N
That is, the probability density of x reduces to the form known6 to hold
for an ordinary random walk continuous in time. It is of interest to
compare this limiting density with that describing the actual displacement
of dimers, according to Eq. (99). This is done in Fig. 10. The distribu-
tions clearly show two effects: 1) A gradual decrease in the probability of
being at a point x as x increases. 2) Strong oscillations, caused by
differences in jump rates from even and odd sites, It is clear that a
Gaussian can be seriously in error as an approximation to any individual
value of Py Averaging the probability over adjacent sites, however,
reduces this problem, In Fig., 11, these averaged values are compared with
a Gaussian, all at the same effective rate A = 2ab/(a+b). Even when the
rates a and b are quite different, a Gaussian serves as a reasonable
approximation to the averaged probability of finding a dimer in a

specified unit cell.
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V. SUMMARY

Elementary statistical techniques have been used to evaluate exactly
the mean square displacement of small clusters, capable of existing in
energetically different configurations at each site of the center of mass
lattice. Two specific problems have been examined - the diffusion of
dissociating dimers, and of bound trimers. The techniques used for the
latter should also be adequate to describe the motion of larger clusters.
However, the present development already suffices for the analysis of
available experimental information, which will be presented separately.

The evaluation of the probability densities described here is more
limited. Our approach is specific for dimers; examination of larger
clusters will require new techniques, Even for such clusters, however,

a crude estimate of the distance distribution should be possible by

resorting to the averaging procedure found useful for dimers,
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APPENDIX: KOLMOGOROV'S EQUATION FOR px,i
If the primary concern is with the probability Py that site x be

occupied regardless of cluster configuration, then the formalism in
Section I suffices. A more elaborate symbolism is required to evaluate
the probability px,i that a specified configuration i be at a given site.
In general, rate constants for jumping from a site to its neighbor will
depend both upon the initial and the final configuration of the cluster.
We therefore denote the rate constant for transitions from x to x+1,
starting in configuration h and ending in configuration i, by kx,hi;
similarly the rate from x to x-1, starting in configuration h and ending

in i is indicated by M hi® The Kolmogorov equation for the probability
b

e G O HE R W R e e

P i of having a cluster at point x in configuration i, can now be written
as
dpx i
3t & Mt " i O th * ¥y 007 ¢
& * L byst,ht st h S
.- This relation is crucial to the discussion of trimer motion, for example.

It is the basis of Eq. (45), for the probability of finding a trimer in
configuration 1A.

In general, this detail is not necessary. We then regain a relation
: . for the probability Py of site x being occupied, regardless of the particular

cluster configuration, by summing Eq. (Al) over all configurations i at x.

That is,
dpx dﬁpx,i
e "0 " P laantPeera " B Oy o YR g (A8)
i,h h,i
+ I u P
h,i x+1,hi"x+1,h .
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It is now useful to introduce the definitions
xxpx - .Z Kx,ihpx,i
i,h
' (A3)
Pop WO N D
X' X t.h x,ih"x,1
l By the same steps sketched in Section I we obtain the differential equation
( 2
l for ((8x)7):
R R R S 0 D LT
l dt X MR X Hx " Wyt )e
l However, a more elaborate convention for the different symbols must now
o+ recognized:
<kx> =z .Z xx,ihpx,i <ux> = Z ux,ihpx,i
' % i.h x 1,h
(XA ) = T A p. (mp ) =Zx T p -
‘ x x 1,h X0 x4 X . i,h x,1h*x,1 (AS)
?
i
U =

——m
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FIGURE CAPTIONS

Schematic of dimer and trimer configurations in one-dimensional
diffusion on a lattice represented by shaded circles. Onen
circles indicate clusters. Surface sites in adjacent channels
are throughout assumed to be exactly abreast of each other.
Spacing in close-packed direction is £.

Rate constants for interconversion of dimer configurations on a
one-dimensional lattice. Configurations are labelled by the
separation between atoms, in units of £, along the direction of
diffusion,.

Configurations allowed on the points x of the center of mass lattice
of a dimer. Arrows indicate the jumps and jump rates between
configurations on neighboring sites.

Schematic of potential energy relations for a dissociating dimer.
Shading indicates separation at which interactions between
adatoms in cluster vanish. AE: denotes diffusion barrier for a
single atom.

Mean-square displacement of dissociating dimers, modeled on the
behavior of Re on W(le).3 Parameters entering estimates are

@y = 2.2 x 102 exp(~17,500/RT), B, = 2.5 x 10'% exp(-18,300/RT),
o = 2.95 x 10'% exp(-19,800/RT), P_ = 10.5 exp(-E,/RT),

P,/P, = exp(-E,/RT), @, = 2.95 X 102 exp[-(19,800 + cE,)/RT].

All estimates at T = 330°K. Different degrees of dissociation

are obtained by varying E2 between 0 and 5000 cal/mole.
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Configurations and rate constants for trimer diffusion.
Energetically different configurations on the same site x are
distinguished by A and B.

Probability density for the total number of jumps N made by a

dimer during the interval t. All estimates in this and subsequent
figures are made for the same effective jump rate A = 2ab/(a+b),
for dimers originating in even positions,

Probability density for the number of jumps, averaged over adjacent
values of N.

Probability density for the time T, at which the kth jump of the

k
dimer occurs.

Probability density for the displacement x of the center of
mass for a dimer. Continuous curve shows probability density

for Gaussian walk with same effective jump rate.

Probability density for x, averaged over adjacent values of x.

Density for Gaussian walk is indicated by continuous curve,
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Fig. 1. Schematic of dimer and trimer configurations in one-dimensional
diffusion on a lattice represented by shaded circles, Open
circles indicate clusters, Surface sites in adjacent channels
are throughout assumed to be exactly abreast of each other,

e : Spacing in close-packed direction is £.
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S Bt Fig, 2. Rate constants for interconversion of dimer configurations on a
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Fig. 3. Configurations allowed on the points x of the center of mass lattice
of a dimer. Arrows indicate the jumps and jump rates between
configurations on neighboring sites,
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Fig. 5. Mean-square displacement of dissociating dimers, modeled on the

behavior of Re on W(211).3 Parameters entering estimates are

a. = 2,2 x 10'2

. exp(-17,500/RT), B, = 2.5 x 10'% exp(-18,300/RT),

2

o = 2,95 x 10'% exp(-19,800/RT), P, = 10.5 exp(-E
P2/P1 = exp(-EleT), a, = 2,95 x 10
All estimates at T = 330°K.

12

o/RD),
exp[-(19,800 + cEz)/RTﬂ.
Different degrees of dissociation

are obtained by varying Ez between o and 5000 cal/mole,
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Fig, 6. Configurations and rate constants for trimer diffusion,

Energetically different configurations on the same site x rce
distinguished by A and B,
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